Poster # 244

AFNT-111, a preclinically safe and effective TCR-engineered T cell therapy targeting the oncogenic driver KRAS G12V mutation

Hubert Lam¹, Xingyue He¹, Michele M. Hoffmann¹, Cheryl Black¹, Joshua Francis¹, James Parsons¹, Christian Roy¹, Jinsheng Liang¹, Hongjing Qu¹, Martin Campbell¹, Tomasz Sewastianik¹, Jessica Webb², Aude G. Chapuis^{2, 3, 4}, Thomas M. Schmitt², Philip D. Greenberg^{2, 3, 4}, Damien Hallet¹, Markus P. Vallaster¹, Piotr Pierog¹, Gary Shapiro¹, Loïc Vincent¹ ¹Affini-T Therapeutics, Seattle, WA and Watertown, MA, USA. ²Program in Immunology and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.³University of Washington School of Medicine, Seattle, WA, USA. ⁴Departments of Immunology and Medicine, University of Washington, Seattle, WA, USA

Abstract

Mutations in the RAS family of genes are responsible for up to 30% of all human cancers. Mutated RAS proteins are truncal oncogenic driver antigens essential for cancer development and progression making them optimal targets for cancer therapies by limiting tumor escape. The AFNT-111 cell therapy consists of autologous CD8⁺ and CD4⁺ T cells expressing a TCR specific for the highly prevalent KRAS G12V mutation presented by HLA-A*11:01, one of the most common HLA alleles worldwide. AFNT-111 is also engineered to express the CD8 α/β coreceptor, enabling a coordinated CD4⁺/CD8⁺ tumor response that aims to promote increased T cell activity and persistence while minimizing T cell exhaustion.

- > Oncogenic driver mutations responsible for cancer are ideal targets
- KRAS most frequent mutated oncogene in solid tumors
- > TCR-T are an optimal modality to attack mKRAS with PoC demonstrated in multiple T cell trials^{1,2}

Methods

Lentiviral vector was used to transduce primary human CD4⁺ and CD8⁺ T cells with the KRAS G12V-specific TCR and CD8 α/β coreceptor. Engineered T cells were assessed against KRAS G12V or KRAS wildtype peptide and a panel of KRAS G12V-expressing tumor cell lines for in vitro activation, proliferation, and cytotoxicity.

In vitro safety studies were performed to define the AFNT-111 TCR recognition motif and evaluate AFNT-111 selfpeptide cross-reactivity, alloreactivity and cytokine-KRAS G12V CD8aß gene independent growth.

In vivo tumor efficacy studies were conducted using human KRAS G12V xenografts in NSG immunocompromised mice after therapeutic administration of AFNT-111.

Cell lines used	Cancer derivation
CFPAC-1	Pancreatic
DAN-G	Pancreatic
SW620	Colon
SW480	Colon
COR-L23	Lung
NCI H441	Lung
SW527	Breast
OVCAR-5	Ovarian

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

SITC 37th Annual Meeting November 10 2022

Corresponding Author: Hubert Lam@affinittx.com